Semidefinite descriptions of separable matrix cones

نویسنده

  • Roland Hildebrand
چکیده

Let K ⊂ E, K′ ⊂ E′ be convex cones residing in finite-dimensional real vector spaces. An element y in the tensor product E ⊗ E′ is K ⊗ K′-separable if it can be represented as finite sum y = P l xl ⊗ x ′ l, where xl ∈ K and x ′ l ∈ K ′ for all l. Let S(n), H(n), Q(n) be the spaces of n × n real symmetric, complex hermitian and quaternionic hermitian matrices, respectively. Let further S+(n), H+(n), Q+(n) be the cones of positive semidefinite matrices in these spaces. If a matrix A ∈ H(mn) = H(m) ⊗H(n) is H+(m) ⊗ H+(n)-separable, then it fulfills also the so-called PPT condition, i.e. it is positive semidefinite and has a positive semidefinite partial transpose. The same implication holds for matrices in the spaces S(m)⊗S(n), H(m)⊗S(n), and for m ≤ 2 in the space Q(m)⊗S(n). We provide a complete enumeration of all pairs (n, m) when the inverse implication is also true for each of the above spaces, i.e. the PPT condition is sufficient for separability. We also show that a matrix in Q(n) ⊗ S(2) is Q+(n) ⊗ S+(2)-separable if and only if it is positive semidefinite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite Characterization of Sum-of-Squares Cones in Algebras

We extend Nesterov’s semidefinite programming characterization of squared functional systems to cones of sum-of-squares elements in general abstract algebras. Using algebraic techniques such as isomorphism, linear isomorphism, tensor products, sums and direct sums, we show that many concrete cones are in fact sum-of-squares cones with respect to some algebra, and thus representable by the cone ...

متن کامل

Logarithmic barriers for sparse matrix cones

Algorithms are presented for evaluating gradients and Hessians of logarithmic barrier functions for two types of convex cones: the cone of positive semidefinite matrices with a given sparsity pattern, and its dual cone, the cone of sparse matrices with the same pattern that have a positive semidefinite completion. Efficient large-scale algorithms for evaluating these barriers and their derivati...

متن کامل

A Brief Introduction to Duality Theory

These notes give an introduction to duality theory in the context of linear and positive semidefinite programming. These notes are based on material from Convex Analysis and Nonlinear Optimization by Borwein and Lewis and Numerical Optimization by Nocedal and Wright. Two examples are given to show how duality can be used. The first optimization application is to find the matrix in an affine fam...

متن کامل

Chordal Graphs and Semidefinite Optimization

Chordal graphs play a central role in techniques for exploiting sparsity in large semidefinite optimization problems and in related convex optimization problems involving sparse positive semidefinite matrices. Chordal graph properties are also fundamental to several classical results in combinatorial optimization, linear algebra, statistics, signal processing, machine learning, and nonlinear op...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008